MA1025 Exam # 2

Th. September 14th, 2006	Name
Instructor: Ralucca Gera	
Show all necessary work in each problem to receive credit.	
1 (10 points) Solve either (a) or (b)	

- 1. (10 points) Solve either (a) or (b).
- (a) A relation R is defined on the set $A = \{1, 2, 3\}$, by $R = \{(1, 2), (2, 1)\}$. Prove that either R is an equivalence relation, or explain why it is not an equivalence relation.
- (b) The empty relation $R = \emptyset$ is defined on the set $A = \{1, 2, 3\}$. Prove that either R is an equivalence relation, or explain why it is not an equivalence relation.
- (a) or (b) **Solution**: R is not an equivalence relation since it is not reflexive (for example $(1,1) \notin R$).

(10 points) A relation R is defined on the set \mathbb{Z} , by xRy if x-y is even. Prove that either R is transitive, or explain why it is not transitive.

Proof: R is transitive: Let $x, y, z \in \mathbb{Z}$ such that xRy and yRz. Then x - y = 2k and $y - z = 2\ell$, for some $k, \ell \in \mathbb{Z}$. Then $x - z = (x - y) + (y - z) = 2k + 2\ell = 2(k + \ell)$. (You could also solve for x and z, and then compute x-z). Since $k+\ell \in \mathbf{Z}$, it follows that x-z is even, and so xRz.

3. (10 points) A function $f: \mathbb{R} - \{-7\} \to \mathbb{R} - \{1\}$ is defined by $f(x) = \frac{x}{x+7}$. Assume that f is bijective. Find the inverse function $f^{-1}(x)$ (i.e. give the domain, range and formula for f^{-1}).

Proof: We solve f(x) = y for x in order to get the inverse:

$$f(x) = y$$

$$\frac{x}{x+7} = y$$

$$x = xy+7y$$

$$x-xy = 7y$$

$$x(1-y) = 7y$$

$$x = \frac{7y}{1-y}, (y \neq 1 \text{ as } y \in \mathbb{R} - \{1\}).$$

Thus,
$$f^{-1}: \mathbb{R} - \{-1\} \to \mathbb{R} - \{-7\}$$
 and $f^{-1}(x) = \frac{7x}{1-x}$.

Note that $1-x \neq 0$ since $x \in \mathbb{R} - \{-1\}$. Also, $\frac{7x}{1-x} \neq 7$, since if it did, then 7x = 7(1-x) which simplifies to 0 = 7 wich is a contradiction.

- **4.** (10 points) A function $f: \mathbb{R} \{0\} \to \mathbb{R} \{0\}$ is defined by $f(x) = \frac{3}{-2x}$.
 - a) Prove or disprove that f is one to one (injective). (5 points)

Proof: For $a, b \in \mathbb{R} - \{0\}$, let f(a) = f(b) then

$$\frac{3}{-2a} = \frac{3}{-2b}$$

$$3(-2b) = 3(-2a)$$

$$-6b = -6a$$

$$a = b.$$

Thus f is one to one.

b) Prove or disprove that f is onto (surjective). (5 points)

Proof: For $y \in \mathbb{R} - \{0\}$, let $x = \frac{3}{-2y}$ $(y \neq 0)$. Observe $\frac{3}{-2x} \in \mathbb{R} - \{0\}$ (as $\frac{3}{-2x} \neq 0$). Then

$$f(x) = f(\frac{3}{-2y}) = \frac{3}{-2(\frac{3}{-2y})} = \frac{3y}{3} = y$$
, so f is onto.

- 5. (10 points) Suppose |A| = 4 and |B| = 6.
- (a) Find the number of functions $f: A \to B$. (5 points)

Solution: Since each element of A can be mapped to any element of B, there are exactly 6 choices for each element of A to get mapped. Thus there are $6^4 = 1296$ function from A to B.

(b) Find the number of 1-1 functions $f:A\to B$. (5 points)

Solution: Since ach element of A needs to get mapped to a unique element of B, we have exactly 6 choices for the first element, five choices for the next element, 4 choices for the third element and two choices for the last element of the set A. Thus the answer is $6 \cdot 5 \cdot 4 \cdot 3 = 360$.

- **6.** (10 points) A committee of six is to be selected from 11 men and 8 women. In how many ways can this be done if
- a) There are no restrictions?

Solution: $\binom{19}{6}$

b) There must be exactly three men and three women? Solution: $\binom{11}{3} \cdot \binom{8}{3}$

7. (10 points) How many bitstrings of length 12 begin with 11 or end with 10? **Solution**: There are 2^{10} bittrings that begin with 11, also 2^{10} that end with 10, and 2^{8} that begin with 11 and end with 10 that got counted twice. Thus, we have a total of $2^{10} + 2^{10} - 2^{8} = 1792$.

8. (10 points) Find the **term** that contains x^3 in the expansion of $(5x - 2y)^{10}$. **Solution**: $\binom{10}{7}(5x)^3(-2y)^7 = -1,920,000x^3y^7$

9. (10 points) Use a combinatorial proof to show that

$$\binom{3n}{3} = \binom{2n}{3} + \binom{n}{3} + n\binom{2n}{2} + 2n\binom{n}{2}.$$

Proof: The number on the left hand side is the number of 3-subsets of a 3n-set. For the right hand sie, let the 3n-set contain say, 2n red and n blue elements. There

are
$$\binom{2n}{3}$$
 red 3-subsets, $\binom{n}{3}$ blue 3-subsets, $\binom{2n}{2}\binom{n}{1}=n\binom{2n}{2}$ 2-red and 1-blue

subsets, and $\binom{2n}{1}\binom{n}{2}=2n\binom{n}{2}$ 1-red and 2-blue subsets. We thus have a total of

$$\binom{2n}{3} + \binom{n}{3} + n\binom{2n}{2} + 2n\binom{n}{2}$$
, giving the above relation.

MA1025 Exam # 2, Take home part

DUE Th. September 14th, 2006 at 9am Name

Instructor: Ralucca Gera

Show all necessary work in each problem to receive credit. You may only use your formula sheet and calculator. Time limit: 30 min.

10. (10 points) Use the principle of mathematical induction to prove that for all

$$n \in \mathbb{N}, \sum_{i=1}^{n} (i)(i!) = (n+1)! - 1.$$

Proof: We prove by induction that $S_n : \sum_{i=1}^n (i!)(i) = (n+1)! - 1$ is true for all natural

numbers n.

The statement $S_1: 1! \cdot 1 = 2! - 1$ is true since 1 = 2 - 1.

Assume that $S_k : 1 \sum_{i=1}^k (i!)(i) = (k+1)! - 1$ is true and prove that $S_{k+1} : \sum_{i=1}^{k+1} (i!)(i) = (k+1)! - 1$ is true. Observe that

$$\sum_{i=1}^{k+1} (i!)(i) = 1! \cdot 1 + 2! \cdot 2 + 3! \cdot 3 + \dots + (k+1)! \cdot (k+1)$$

$$= 1! \cdot 1 + 2! \cdot 2 + 3! \cdot 3 + \dots + \dots + (k)! \cdot (k) + (k+1)! \cdot (k+1)$$

$$= (k+1)! - 1 + (k+1)! \cdot (k+1)$$

$$= (k+1)!(1+k+1) - 1$$

$$= (k+1)!(k+2) - 1$$

$$= (k+2)! - 1$$

Therefore by the Principle of Math Induction S_n is true for all natural numbers n.